
          The Ultimate Mac Cracking
 Guide
(See next chapter for part 2 of 2)

 ---===< Intro >===---

Well I realized that it might be difficult for people to understand what I'm
talking about if they can't try it themselves. So, I threw together a little
program called CrackIt. CrackIt allows you to choose between three different
types of protection systems and to try and crack each one. And the best
thing about it is that it's 100% legal to crack this program (you have my
permission! As a matter of fact, that's what it is for!) And since I wrote it, it's
legal for me to describe how to crack it! These odds I like! But let me warn
you again that cracking commercial software is illegal!    And remember that
we're trying to fight big corportations monopolizing the computer hardware
and software industries.    So support sharewares by paying for them!

---===< Reg Type 1>===---

OK, let's have a look at CarckIt! As I said before, this is a very simple
program, but great for practicing cracking! And the best of it all is that it's
LEGAL to crack this program!   

Select "Reg Type 1" from the File menu! A dialog box appears and you are
asked to enter your reg name and reg number. Do the usual procedure and
type in your reg name into the dialog box. Then type in the number:
12345678 and go into MacsBug. Initiate the break for the a-trap
"modaldialog" by issuing the command "atb modaldialog". Return to CrackIt
by issuing the return command "g", and finish the registration number by
typing "9".   

This time you should be dropped straight into MacsBug. Now trace over the
modaldialg a-trap with the "t" command. And in CrackIt click on the
"Register" button. Once again you should be in MacsBug, and now we're
ready to follow through the code!   

This is what you should see once you start traceing trough the code from
here: (the lines starting with two stars, **, are commands that I issued to
MacsBug. They would not appear if you were simply traceing trough the
code)

 Scramble
 +0032A 00C9369A MOVE.W $003C(A6),D0 | 302E 003C
 +0032E 00C9369E CMPI.W #$0001,D0 | 0C40 0001
 +00332 00C936A2 BEQ Scramble+00344 ; 00C936B4 | 6700 0010
 +00344 00C936B4 MOVE.L $0038(A6),-(A7) | 2F2E 0038
 +00348 00C936B8 MOVE.W #$0003,-(A7) | 3F3C 0003
 +0034C 00C936BC PEA $0044(A6) | 486E 0044
 +00350 00C936C0 PEA $0040(A6) | 486E 0040
 +00354 00C936C4 PEA $0046(A6) | 486E 0046
 +00358 00C936C8 _GetDialogItem ; 0028F168 | A98D
 +0035A 00C936CA MOVE.L $0040(A6),-(A7) | 2F2E 0040
 +0035E 00C936CE PEA $004E(A6) | 486E 004E
 +00362 00C936D2 _GetDialogItemText ; 0028ECD4 | A990
 **Displaying memory from a1
 00C93AFD 5072 6F5A 6171 0000 0000 0000 0000 0000 ProZaq••••••••••
Step (over)
 Scramble
 +00364 00C936D4 MOVE.L $0038(A6),-(A7) | 2F2E 0038
 +00368 00C936D8 MOVE.W #$0006,-(A7) | 3F3C 0006
 +0036C 00C936DC PEA $0044(A6) | 486E 0044
 +00370 00C936E0 PEA $0080(A6) | 486E 0080
 +00374 00C936E4 PEA $0084(A6) | 486E 0084
 +00378 00C936E8 _GetDialogItem ; 0028F168 | A98D
 +0037A 00C936EA MOVE.L $0080(A6),-(A7) | 2F2E 0080
 +0037E 00C936EE PEA $008C(A6) | 486E 008C
 +00382 00C936F2 _GetDialogItemText ; 0028ECD4 | A990
 **Displaying memory from a1
 00C93B3B 3132 3334 3536 3738 3900 0000 0000 0000 123456789•••••••
Step (over)
 Scramble
 +00384 00C936F4 RTS | 4E75
 +00034 00C933A4 BSR Scramble+00386 ; 00C936F6 | 6100 0350
 +00038 00C933A8 LEA $008C(A6),A0 | 41EE 008C
 **Displaying memory from a0
 00C93B3A 0931 3233 3435 3637 3839 0000 0000 0000 •123456789••••••
Step (over)
 Scramble
 +0003C 00C933AC MOVE.W #$0001,-(A7) | 3F3C 0001
 +00040 00C933B0 _StringToNum ; BinDecConv | A9EE
 **D0 = $075BCD15 #123456789 #123456789 '•[Õ•' (between #117M and #118M)
Step (over)
 Scramble
 +00042 00C933B2 CMPI.L #$646F726B,D0 ; 'dork' | 0C80 646F 726B
 +00048 00C933B8 BEQ Scramble+003B0 ; 00C93720 | 6700 0366
 +0004C 00C933BC BRA Scramble+0039E ; 00C9370E | 6000 0350
 +0039E 00C9370E CLR.W -(A7) | 4267
 +003A0 00C93710 MOVE.W #$0071,-(A7) | 3F3C 0071
 +003A4 00C93714 CLR.L -(A7) | 42A7

Well... This is NOT supposed to be a tutorial on programing in assembely so I
will not bore you with programing stuff!    Notice this, however!    Before every
_GetDialogItem a-trap there is a bunch of shit pushed onto the stack with the
"PEA" command.    After every _GetDialogItem a-trap, there is a

_GetDialogItemText a-trap. And once this a-trap is complete address register
one points to a location in the memory containing the registration info. The
first _GetDialogItemText occurs at offset +362. And straight after that I
issued the following command in MacsBug "dm a1" (display memory from
address register one). And as I predicted, a1 contained my registration
name! The next _GetDialogItemText a-trap in turn puts my reg number in a1. 

At offset +384, there is a return from sub routine command "RTS", meaning
that we have exited the section of the program dealing with getting
information from the dialog box.   

Straight after the RTS command at offset +34 the program will branch off to
another subroutine. That is not important for now! I simply traced over it. But
what do I see immediately after the subroutine? A command pushing an
address into a0!    So imediately I figure out that something is going to
happen, or has happened to a0. Therefore, I issue the "dm a0" command.
And I notice that a0, contains the Pascal format of my registration number.
(In Pascal strings the first byte is always the number of letters used in the
string. eg: 1234=ASCII: 31323334. In Pascal this string would be represented
as: 04 31323334. Don't worry about it! I read somewhere that Pascal was not
designed for human use and I completely aggree with it!)

Anyway, after this is another a-trap. The _StringToNum trap is used to
convert ASCII values into hexadecimal form (it has some other uses as well).
How do I know? Well, have a look at data register zero. D0=075BCD. If you
type "d0" into MacsBug, it will show you the current value stored in d0. I did
that, and I imideately noticed that the number stored in d0 was actually the
hex value of my registration number!

This is important! You should ALWAYS be able to recognize the hex value of
your reg number! So before cracking make sure you convert your reg
number to hex!

At offset +42 we find this command:

 +00042 00C933B2 CMPI.L #$646F726B,D0 ; 'dork' | 0C80 646F 726B

This instruction compares the number in d0 to $646F726B. Why does it say
"dork" you ask? Well to the best of my knowledge the hexadecimal values of
the ASCII letters "dork" = $646F726B.    After this command there is a
conditional which will not branch and after that an alert box greets me saying
that I entered the wrong reg number. At this point it is very safe to conclude
that it is the conditional at offset +48 that needs to be changed.   

Launch CrackIt again, and repeat the above procedures so that you end up at

the conditional at offset +48. (Of course you didn't forget to clear the a-traps
did you with the "atc" command? Also, don't worry if the hex number next to
the offsets do not match! Those are the values of the current locations that
the program occupies in the RAM, and will most likely vary every time you
launch CrackIt.)

So you've come to this conditional once again. As you may notice, it says
"Will not Branch" above the current instruction in MacsBug.    This means that
the conditions are not met for it to branch.    However, MacsBug does show,
where it WOULD HAVE branched.    Using my values (this will be different for
you) it was the address: C93720. I found out where it was going to branch by
reading the value next to the current command, which was C93720. From the
second part of The Ultimate Cracking Guide you might remember that you go
to a particular address in the memory by issuing the command "pc=address
value", in this case "pc=C93720". Once you've done that, clear the a-traps
"atc", and let CrackIt take control again with the "g" command. And presto,
the "thank you for registering" dialog shows up!

So how would I change this branch permanantly? Open up CrackIt with Super
ResEdit. Open up the resource "CODE" and resource ID 2.    Activate the hex
editor (if it's not active) and find offset 48. (Find menu, "Find offset" or Apple-
H) This should have selected the number 67 in the hex editor window. If you
want, you can activate the code editor window, and notice that the first two
digits have been selected of the machine code part of the code responsible
for the conditional. Now, activate the hex editor window again and type "60".
60 is the machine code for "BRA" and since we wanted the command to
"always branch" we changed it to "BRA". If you now have a look in the code
editor window, the "BEQ" command should have changed to "BRA". It is very
important that you only change the first two digits! If you change any more
digits, your computer will freeze for sure when you launch CrackIt again! If
you think you did all right, save your work and quit Super ResEdit. Launch
CrackIt again, and select "Reg Type 1" from the File menu. And if you did
everything correctly, then no matter what you entered as a reg number you
will always get the "good reg number" dialog! In this particular example it
was not necessary for you to change the code with Super ResEdit. You would,
however, need to change the actual code of the application if the program
checked your registration every time it was launched. But if it's enough to
crack it with MacsBug, then don't bother changing the code with ResEdit!

---===< Cracking Reg Type 3 (Being a Serial Killer) >===---

I will not deal with how to crack Reg Type 2, as it is not complicated at all,
and if you can't crack it, then you can always refer to the user's manual or
the source code, which describes in detail what is going on!

Anyway, Reg Type 3. This is a bit of a bitch. And since I haven't covered the
concept of "being a serial killer" yet I will not discuss how to do a physical
crack for this, but rather how to find a correct registration number for a
certain registration name! If you have tried to crack Reg Type 3 using the
previous method you might have found it a bit tedious. Although far from
being good, Reg Type 3 is maybe the type of protection you could expect
from    a medium sized shareware. And in some situations it is a lot easier to
actually find a correct serial number then to follow through the code then to
change zillions of conditionals! So what are the main differences?

When trying to find a valid serial number, we are not looking for a conditional
specifically, but for the section of the code generating the correct
registration number. When finding serial numbers we don't really care what
type of protection systems the software uses.    We just wanna find that place
where the program enters the algorithm for determining a valid serial
number for a specific registration name, and figure out what it does.

Reg Type 3 uses a very simple algorithm for determining the valid
registration number, and does not hide this algorithm much either.    So let's
get CrackIt running and do the modaldialog a-traps. After returning from the
subroutine dealing with getting information from the dialog box (the same
routine that is used in Reg Type 1 and 2), you will find a subroutine, this one
is used to dispose the dialog box (nothing to worry about).   

After that you have the first trick of Reg Type 3.    This is the easiest
protection type and is used rather heavily by software developers.    It mearly
checks how many letters there are in the reg name and if there are too many
or not enough letters (max. 10 in this case), the "wrong number" dialog will
appear.

After this there is the already familiar _StringToNum a-trap which converts
the entered reg number to hex.    And after that there are two subroutines, if
you trace over them you will find that the second one brings up the "wrong
number" dialog. Therefore, something important must occur in one of those
routines!
So,    step into that first routine.

 Scramble
 +00124 004B59C4 LEA $004E(A6),A0 | 41EE 004E
 +00128 004B59C8 BSR Scramble+00242 ; 004B5AE2 | 6100 0118

Oh great straight away another subroutine!    Step into that one too:

 Scramble
 +00242 004B5AE2 MOVE.L D0,D7 | 2E00
 +00244 004B5AE4 CLR.L D0 | 4280
 +00246 004B5AE6 CLR.L D1 | 4281

 +00248 004B5AE8 CLR.L D2 | 4282
 +0024A 004B5AEA CLR.L D4 | 4284
 +0024C 004B5AEC MOVE.B (A0)+,D0 | 1018
 +0024E 004B5AEE BSR Scramble+0007C ; 004B591C | 6100 FE2C

Well this is interesting. Clearing data registers... This looks like preparation
for something. If you care to take a look at the address registers, you will find
out even more! Anyway, step into the subroutine at +24E:

 Scramble
 +0007C 004B591C MOVE.B (A0)+,D1 | 1218
 +0007E 004B591E ADD.W D1,D2 | D441
 +00080 004B5920 SUBI.B #$01,D0 | 0400 0001
 +00084 004B5924 TST.B D0 | 4A00
 +00086 004B5926 BNE Scramble+0007C ; 004B591C | 6600 FFF4
 +0007C 004B591C MOVE.B (A0)+,D1 | 1218
 +0007E 004B591E ADD.W D1,D2 | D441
 +00080 004B5920 SUBI.B #$01,D0 | 0400 0001
 +00084 004B5924 TST.B D0 | 4A00

Oh great! We just stepped into a loop! (And not even a good one as it doesn't
use the loop command) Let's try to figure out what it does!

First, it moves the byte from a0 into d1, with post increment. If you take a
look at a0 ("dm a0") before and after the command you will find that the first
letter in your reg name was put into d0, and a0 is now pointing to the second
letter in your reg name. Then d1, is added to d2 (which is zero to start out
with).

What was the value of d0 until now? Well gosh... That just happened to be
the number of letters used in the registration name.    And now one is
subtracted from it... At offset +84 d0 is tested. And since it wasn't zero it
branched to the beginning of the subroutine!   

OK!    Let's try to figure out what's going on here! Since it's a loop it's
repetitive, and it repeats itself as many times as there are letters in the reg
name. And it adds the ASCII values to d2. Meaning that it adds up the ASCII
values used in the reg name! Great! We've got the first step! Now how to
break outa this loop? If you recall I described how to use the "br" (break)
command in the last part of The Ultimate Mac Cracking Guide. To use the
break command you have to specify, which memory address you want the
break to occur at (at which point you want to be dropped into MacsBug
again). In this situation we want to enter MacsBug after the conditional at
offset +86. In the above exert, that is the MOVE.B command, but in reality
the MOVE.B command is the beginning of the loop. And what comes after the
conditional is a RTS command.    So I simply specify the address of the RTS
instruction in the RAM, which in this case is 04B592A. (see below) And after
issuing the "g" command I'm dropped into MacsBug when the loop is

completed.    Now it is time to clear that break point with the "brc" command. 

Let's have a look at d2! If you add up the ASCII values in your registration
name you will find it to equal the value in d2.

And on we go.    Here's that RTS command and what follows after it!

 +0008A 004B592A RTS | 4E75
 +00252 004B5AF2 LEA $004E(A6),A0 | 41EE 004E
 +00256 004B5AF6 MOVE.B (A0)+,D0 | 1018
 +00258 004B5AF8 MOVE.L D2,D3 | 2602

Another couple of commands that look like some preparations, followed by a
subroutine.    Let's step into it.

Step (into)
 Scramble
 +0025A 004B5AFA BSR Scramble+00276 ; 004B5B16 | 6100 001A
 +00276 004B5B16 MOVE.B (A0)+,D1 | 1218
 +00278 004B5B18 MULU.L D1,D2 | 4C01 2000
 +0027C 004B5B1C ADD.W D2,D4 | D842
 +0027E 004B5B1E MOVE.L D3,D2 | 2403
 +00280 004B5B20 SUBI.B #$01,D0 | 0400 0001
 +00284 004B5B24 TST.B D0 | 4A00
 +00286 004B5B26 BNE Scramble+00276 ; 004B5B16 | 6600 FFEE
 +00276 004B5B16 MOVE.B (A0)+,D1 | 1218
 +00278 004B5B18 MULU.L D1,D2 | 4C01 2000
 +0027C 004B5B1C ADD.W D2,D4 | D842
 +0027E 004B5B1E MOVE.L D3,D2 | 2403
 +00280 004B5B20 SUBI.B #$01,D0 | 0400 0001
 +00284 004B5B24 TST.B D0 | 4A00
**Break at 004B5B2A (Scramble+0028A) every time
**Breakpoint at 004B5B2A Scramble+0028A
 **All breakpoints cleared

Oh great! Another loop! So what's this one doing? Well once more we have
the reg name in a0, and at the beginning of the subroutine (the beginning of
the loop) the next letter in line in the reg name is moved to d1. Then d2 is
multiplied by d1. Remember what was in d2? The sum of the ASCII values of
the letters used as the reg name. Then d2 is added to d4, and d2 is replaced
by d3, which is the sum of the reg name. D0 is once more the counter, as it
contains the number of letters used in the reg name. At offset +280 d0 is
updated and at offset +284 d0 is compared to zero. And as long as it doesn't
equal zero it will branch to the beginning of the subroutine.    To break out of
this loop I used the "br" command again. (You can see this from the notes
that were given to me by MacsBug.) If you use break commands, don't forget
to clear them with the "brc" command once yer done with them!

OK, so I'm outa the loop, here's what happens.

 +0028A 004B5B2A RTS | 4E75
 +0025E 004B5AFE RTS | 4E75

The "RTS" commands are used since it is done with the subroutines.    And
after that there is yet another subroutine:

Step (into)
 Scramble
 +0012C 004B59CC BSR Scramble+00260 ; 004B5B00 | 6100 0132
 +00260 004B5B00 CMP.L D4,D7 | BE84
 **D4 = $000095C9 #38345 #38345 '••ï…' (between #37K and #38K)
 +00262 004B5B02 BNE Scramble+0039E ; 004B5C3E | 6600 013A
 +0039E 004B5C3E CLR.W -(A7) | 4267
 +003A0 004B5C40 MOVE.W #$0071,-(A7) | 3F3C 0071
 +003A4 004B5C44 CLR.L -(A7) | 42A7
 +003A6 004B5C46 _Alert ; 002E81F0 | A985

Remember what was stored in d7? The hex value of the reg number that you
used! And now it's comparing d4 to your reg number.    What is in d4? Well in
the last subroutine d4 was used as the register where the numbers were
added to each other. And if you follow the code a bit more you will notice
that the two values (d4 and d7) don't match and therefore it branches off to
a routine that puts up the alert dialog box informing us that we entered the
wrong reg number. So, we've hit a very important part of the code.    The
program is now done with putting your reg name through the algorithm and
now compares the reg number you entered to the valid one. Now, you ask
yourself, what is the valid one? Well, it is the value stored in d4.    In my case
hex: 95C9 or dec: 38345 (I issued the "d4" command to find out what the
decimal value of d4 was). So the simplest thing is simply to clear all a-traps
and break points and go back to CrackIt. Let it inform you that you entered
the wrong reg number, and the next time you select "Reg Type 3" from the
File menu, enter 38345 (or whatever value was in d4 for you) and you should
get the "thanx for registering" dialog!    That is, only if you used the same reg
name as you did before!   

So the first way to find valid serial numbers is to follow through the code
until it is done with the registration algorithm, and then find the conditional
where it compares the valid reg number to the reg number you entered. And
after that, simply get the correct value and the next time the reg dialog
shows up enter that as the reg number!

The other way is to do all the calculations yourself. I used "ProZaq" as a
registration name and here's what the program did to it to calculate the
correct reg number (this is all in hex):

First it added up the ASCII values of the string "ProZaq":
50+72+6F+5A+61+71=25D

Then it multiplied the ASCII value of each letter by the previous sum (25D)
and added them up:
(50*25D)+(72*25D)+(6F*25D)+(5A*25D)+(61*25D)+(71*25D)=595C9

Ha Ha! You say! That is not the value that was stored in d4! Well...    Why
don't you observe the last part of the algorithm a bit more!    Whenever a
number is added to d4 the size of the number is a word. Meaning that d4 will
only contain a number the size of a word, which in assembly means that it
can only be four digits long.    Therefore, 595C9 becomes 95C9. And THAT is
the correct value!   

I can recommend you to read article "HOW TO BECOME A SERIAL KILLER"
written by =-BOOK-WORM->. It's a nice file, however, it has one big fault!
The author uses BASIC to create a program that will generate the serial
number for you! (Doesn't BASIC ever get outdated?)

I on the other hand, recommend people to use the wonderful demo of
PowerFantasm by Lightsoft. PowerFantasm is an assembly language compiler.
And since you can create your own programs even with the demo (I haven't
had a look at version 5 yet, but you could with 4.xx) it's bloody pointless to
try and convert assembly commands into any other language. Also, the
PowerFantasm demo comes with a lovely tutorial on how to program in
assembly language! What more could you ask for?

Continued, next chapter...

